Skip to main content
Log in

Three-dimensional simulation of laser–plasma-based electron acceleration

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

A sequential three-dimensional (3D) particle-in-cell simulation code PICPSI-3D with a user friendly graphical user interface (GUI) has been developed and used to study the interaction of plasma with ultrahigh intensity laser radiation. A case study of laser–plasma-based electron acceleration has been carried out to assess the performance of this code. Simulations have been performed for a Gaussian laser beam of peak intensity 5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 1 × 1019 cm − 3, and for a Gaussian laser beam of peak intensity 1.5 × 1019 W/cm2 propagating through an underdense plasma of uniform density 3.5 × 1019 cm − 3. The electron energy spectrum has been evaluated at different time-steps during the propagation of the laser beam. When the plasma density is 1 × 1019 cm − 3, simulations show that the electron energy spectrum forms a monoenergetic peak at ~14 MeV, with an energy spread of ±7 MeV. On the other hand, when the plasma density is 3.5 × 1019 cm − 3, simulations show that the electron energy spectrum forms a monoenergetic peak at ~23 MeV, with an energy spread of ±7.5 MeV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M D Perry and G Mourou, Science 264, 5161 (1994)

    Article  Google Scholar 

  2. V Yanovsky et al, Opt. Exp. 16, 3 (2008)

    Article  Google Scholar 

  3. M D Perry et al, Opt. Lett. 24(3), 160 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  4. M Aoyama et al, Opt. Lett. 28(17), 1594 (2003)

    Article  ADS  Google Scholar 

  5. Y Jiang et al, J. Opt. Soc. Am. B20, 1 (2003)

    Google Scholar 

  6. B Dromey et al, Nature Phys. 2, 456 (2006)

    Article  ADS  Google Scholar 

  7. T Tajima and J M Dawson, Phys. Rev. Lett. 43, 267 (1979)

    Article  ADS  Google Scholar 

  8. A Modena et al, Nature 377, 606 (1995)

    Article  ADS  Google Scholar 

  9. S P D Mangles et al, Nature 431, 535 (2004)

    Article  ADS  Google Scholar 

  10. C G R Geddes, C S Toth, J Van Tilborg, E Esarey, C B Schroeder, D Bruhwiler, C Nieter, J Cary and W P Leemans, Nature 431, 538 (2004)

    Article  ADS  Google Scholar 

  11. J Faure, Y Glinec, A Pukhov, S Kiselev, S Gordienko, E Lefebvre, J-P Rousseau, F Burgy and V Malka, Nature 431, 541 (2004)

    Article  ADS  Google Scholar 

  12. M Borghesi et al, Fusion Sci. Technol. 49, 412 (2006)

    Google Scholar 

  13. V Malka et al, Nature Phys. 4, 447 (2008)

    Article  ADS  Google Scholar 

  14. A Pukhov and S Gordienko, Phil. Trans. R. Soc. A364, 623 (2006)

    Article  ADS  Google Scholar 

  15. A Pukhov, MPQ-Report on High Performance 3D PIC Code VLPL: Virtual Laser Plasma Lab

  16. E Miura, K Koyama, S Kato, N Saito, M Adachi, Y Kawada, T Nakamura and M Tanimoto, Appl. Phys. Lett. 86, 251501 (2005)

    Article  ADS  Google Scholar 

  17. A Yamazaki et al, Phys. Plasmas 12, 093101 (2005)

    Article  Google Scholar 

  18. T Hosokai et al, Phys. Rev. E73, 036407 (2006)

    ADS  Google Scholar 

  19. C-H Hsieh, C-M Huang, C-L Chang, Y-C Ho, Y-S Chen, J-Y Lin, J Wang and S-Y Chen, Phys. Rev. Lett. 96, 095001 (2006)

    Article  ADS  Google Scholar 

  20. B Hidding et al, Phys. Rev. Lett. 96, 105004 (2006)

    Article  ADS  Google Scholar 

  21. M Mori et al, Phys. Lett. A356, 146 (2006)

    Article  Google Scholar 

  22. W P Leemans et al, Nature Phys. 2, 696 (2006)

    Article  ADS  Google Scholar 

  23. J Osterhoff, Phys. Rev. Lett. 101, 085002 (2008)

    Article  ADS  Google Scholar 

  24. W P Leemans et al, Nature Phys. 2, 696 (2006)

    Article  ADS  Google Scholar 

  25. P A Naik and P D Gupta, Int. J. Mod. Phys. B21, 459 (2007)

    Article  ADS  Google Scholar 

  26. C Nieter, J. Comp. Phys. 196, 448 (2004)

    Article  ADS  MATH  Google Scholar 

  27. C K Birdsall and A B Langdon, Plasma physics via computer simulation (McGraw-Hill, New York, 1985)

    Google Scholar 

  28. R A Fonseca et al, Lecture notes in computer science (Springer, Berlin, 2002) Vol. 2331

  29. K S Yee, IEEE Trans. Ant. Prop. 14, 302 (1966)

    Article  ADS  MATH  Google Scholar 

  30. J P Boris, Proc. 4th Conf. Num. Sim. Plasmas edited by J P Boris and R A Shanny (Naval Research Lab, Washington, DC, 1970) pp. 3–67

  31. R Bingham et al, Plasma Phys. Control. Fusion 46, R1 (2004)

    Article  ADS  Google Scholar 

  32. J Villasenor and O Buneman, Comput. Phys. Commun. 69, 306 (1992)

    Article  ADS  Google Scholar 

  33. S R Bobbili, A Moorti, P A Naik and P D Gupta, New J. Phys. 12, 045011 (2010)

    Article  Google Scholar 

  34. A Pukhov and J Meyer-ter-Vehn, Phys. Rev. Lett. 76, 3975 (1996)

    Article  ADS  Google Scholar 

  35. A Pukhov and J Meyer-ter-Vehn, Phys. Rev. Lett. 79, 2686 (1997)

    Article  ADS  Google Scholar 

  36. A Pukhov and J Meyer-ter-vehn, Appl. Phys. B74, 355 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A UPADHYAY.

Rights and permissions

Reprints and permissions

About this article

Cite this article

UPADHYAY, A., PATEL, K., RAO, B.S. et al. Three-dimensional simulation of laser–plasma-based electron acceleration. Pramana - J Phys 78, 613–623 (2012). https://doi.org/10.1007/s12043-011-0254-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12043-011-0254-5

Keywords

PACS Nos

Navigation